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Many optimization problems (Maximum stable set,

maximum cut, minimum dominating set...) are

NP−di�cult.

In some classes of graphs obtained by

excluding some subgraphs

decomposition and composition

These problems are easier to solve.
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A family of decomposable graphs uses

- a set of prime graphs

- a set of operations

Trees (Acyclic and connected)
prime graph: G is vertex
operations: add a vertex and join it by an edge to a vertex
of G

Series Parallel graphs (K4-free)
prime graph: G is a loop
operations: subdivide an edge or duplicate an edge.
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The tree decomposition of a graph gives a way to apply a
polyhedral approach:

Maximum stable set (Boulala and Uhry 1979, Mahjoub
1988, on SP graphs)
Maximum cut (Barahona 1983, on graphs not contractible
to K5)
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De�nitions

H = {x ∈ Rn : aT x = b} Hyperplane, a ∈ Rn ; b ∈ R.
H+ = {x ∈ Rn : aT x ≥ b} and H− = {x ∈ Rn : aT x ≤ b}
half- spaces such that H+ ∪ H− = Rn

- A polyhedron is the intersection of a �nite set of closed
half-spaces.
- A non empty bounded polyhedron is called a polytope .
- A polytope is the convex hull of a �nite number of points
(extreme points).
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Example in R2

In this example the polytope is equal
Conv({A,B,C ,D}) = {2x + 3y ≤ 7; x − 2y ≤ 2; x ≥ 0; y ≥ 0}
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Optimization problems on a graph

Let G = (V ,E ) be a �nite graph ;

S is the set of subsets of vertices (or edges) verifying

some property π.

Find a solution S ∈ S such that c(S) =
∑

t∈S c(t)
is maximum or minimum, where c(t) is the weight of

the vertex (or edge) t.
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Examples for nodes

Given a graph G = (V ,E );

Subsets of vertices

S ⊂ V is a stable if it induces the subgraph (S ,E (S) = ∅)
S ⊂ V is a clique if it induces the complete subgraph K|S |

S ⊂ V is a dominant if each vertex of V \ S is adjacent to
a vertex of S

S ⊂ V is a node-cutset if G is connected and V \ S
induces a non connected subgraph.
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Examples for edges

Given a graph G = (V ,E );

Subsets of edges

S ⊂ E is a cut set if G is connected and (V ,E \ S)
induces a non connected spanning subgraph.

S ⊂ E is a matching if no two edges in S share a same
endnode.
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Polyhedral approach

For a graph G = (V ,E ), we associate a polytope P = P(G ) in
RV (or RE ) as follows:

Each solution S ∈ S is associated to a {0, 1} vector
xS ∈ RV (or RE ), the incidence vector of S such that:

xS(t) =

 1 if t is in S ,

0 otherwise

P(G ) = Conv({xS : S ∈ S})
Try to �nd a �nite set of inequalities (de�ning a linear

system of P) such that xS is a solution of this system i� it
belongs to P .

Then �nding the maximum (or minimum) weighted S is a
(non integer) linear programming problem subject to the
de�ning system of P .
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V. Chvàtal (75) On certain polytopes associated

with graphs

Let S(G ) be the set of all {0,1} incidence vectors (xu, u ∈ V ) of
stable sets in G = (V ,E ) and P(G ) the convex hull of S(G ).

Nonnegativity constraints

xu ≥ 0, u ∈ V (1)

Clique constraints∑
u∈K

xu ≤ 1, K ∈ K(G ) (2)

where K(G ) is the set of all maximal cliques in G ;
Odd hole constraints∑

u∈C
xu ≤

|C | − 1

2
, C ∈ C(G ) (3)

where C(G ) is the set of all odd hole of G .
12/49
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Theorem ( V. Chvàtal, 1975)

1 G is perfect i� the inequalities (1) and (2) are a de�ning
linear system of P(G )

2 G is h-perfect i� the inequalities (1), (2) and (3) are a
de�ning linear system of P(G )
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Separations, V. Chvàtal (75)

G1 = (V1,E1); G2 = (V2,E2); G1 ∩ G2 = (V1 ∩ V2,E1 ∩ E2)
and G1 ∪ G2 = (V1 ∪ V2,E1 ∪ E2)
Let the following inequalities be de�ning linear systems of
P(Gk), k = 1, 2

xu ≥ 0, u ∈ Vk (4)∑
u∈Vk

aiuxu ≤ bi , i ∈ Jk (5)

Theorem ( V. Chvàtal, 1975)

If G1 ∩ G2 is complete then the union of ((4),(5)) for k = 1, 2,
is a de�ning linear system of P(G1 ∪ G2).
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Example : Separations

P(G1 ∪ G2)
{xa + xb + xc ≤ 1; xa + xc + xd ≤ 1; xc + xd + xe ≤ 1}
{xd + xe ≤ 1; xe + xf ≤ 1; xd + xg ≤ 1; xf + xg ≤ 1}
xu ≥ 0, u ∈ {a, b, c, d , e, f , g}
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Substitutions,V. Chvàtal (75)

G1 = (V1,E1); G2 = (V2,E2);V1 ∩ V2 = ∅
Disjoint union G : Substitute a vertex v ∈ V1 by G2 and join
each vertex of G2 to each neighbour of v .
For each i ∈ J1, set a

+
iv = max{aiv , 0}

Theorem ( V. Chvàtal, 1975)

The following inequalities are de�ning linear system for P(G )

xu ≥ 0, u ∈ V2 ∪ V1 \ {v} (6)

a+
iv

∑
u∈V2

(ajuxu) + bj
∑

u∈V1\{v}

(aiuxu) ≤ bjbi , i ∈ J1, j ∈ J2 (7)
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Example: Substitutions

P(G )
{xa + xf + xg + xc ≤ 1; xa + xf + xh + xc ≤ 1;
xa + xg + xi + xc ≤ 1; xa + xh + xi + xc ≤ 1;
xa + xc + xd ≤ 1; xc + xd + xe ≤ 1;
xu ≥ 0, u ∈ {a, c , d , e, f , g , h, i}.}
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More Substitutions

All the following operations are substitution operations which
correspond to operations on the polytopes P(G ).

Duplicating v in G1 ⇔ substituting K̄2

A join G1 + G2⇔ substitute �rst G1 for v1 and then G2 for
v2 in the clique K2 with two vertices v1 and v2,.

A corona G1 ◦G2 ⇔ G2 is substituted for each vertex of G1
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Substitutions Examples
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M. Burlet , J. Fonlupt (95) Polyhedral consequences
of the amalgam operation

In 1995, Burlet and Fonlupt give the amalgam op-

eration ∅ that starting from 2 graphs G1 and G2, builds

the graph G = G1∅G2 such that :

- the description of P(G ) is obtained by a system

of linear inequalities derived from linear representations

of P(G1) and P(G2).
- the operation ∅ preserves perfectness.
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Amalgam operation

Let G1 = (V1,E1) and G2 = (V2,E2) including, for i = 1, 2,
ui ∈ Gi and a clique Ci ⊆ NGi

(ui ) such that

|C1| = |C2|
For i = 1, 2, each vertex of Ci is adjacent to each vertex of
NGi

(ui ) \ Ci .

NG1(u1) \ C1 = ∅ ⇔ NG2(u2) \ C2 = ∅
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Amalgam operation

G is the amalgam of (G1, u1,C1) and (G2, u2,C2)

1 one to one identi�cation of the vertices of C1 with the
vertices of C2

2 create an edge between every vertex of NG1(u1) \ C1 and
every vertex of NG2(u2) \ C2.

3 Delete u1 and u2.
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1985 Cornuéjols and Cunningham :
A polynomial-time algorithm that determines whether or
not a given G is the amalgam of two graphs ; If yes then it
�nds the two graphs.

1994 Burlet and Fonlupt :
- Amalgamation preserves perfectness (They use the result
of Chvatal)
-Amalgam generalizes separation and substitution
operations :
I separation: G = (G1, u1,C1)∅(G2, u2,C2) where

NGi (ui ) \ Ci = ∅
I disjoint union: the amalgam is G = (G1, u1)∅(G ′

2
, u2)

where G ′
2
is G2 with the universel vertex u2.
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A few references

M. Boulala, J.P. Uhry, Polytope des indépendants d'un graphe
série-parallèle(1979)
F. Barahona, A.R. Mahjoub, Composition of graphs and
polyhedra II: stable sets.(1994)
J. Fonlupt, A.Hadjar, The stable set polytope and some
operations on graphs (2002).
G. Stau�er, On the stable set polytope of claw-free graphs
(2005).
B. McClosky, I.V. Hicks, Composition of stable set polyhedra
(2008).
A. Galluccio, C. Gentile, P. Ventura Gear composition and the
stable set polytope (2008).
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A glimpse on the k-sum Operation

G = (V ,E ) ; G1 = (V1,E1) and G2 = (V2,E2)
G is a k-sum of G1 and G2 if

V = V1 ∪ V2 and |V1 ∩ V2| = k

(V1 ∩ V2,E1 ∩ E2) is a complete subgraph.

V1 ∩ V2 is a node-cutset

Used in many compositions for polytopes
→ F. Barahona, The max cut problem in graphs non
contractible to K5 (1983)
→-R. Euler and A.R. Mahjoub On a composition of
independence systems by circuit identi�cation (1990)
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F. Barahona, The max cut problem in graphs non
contractible to K5 (1983)

Wagner's theorem 1937

A graph is K5-minor-free if and only if it can be built from
planar graphs and V8 by repeated k-sums.

Barahona's theorem 1983

If G is a k-sum of G1 and G2 then Pcut(G ) is obtained by
juxtaposing the inequalities which de�ne Pcut(G1) and Pcut(G2)
and identifying the variables associated with edges in G1 ∩ G2.

→ Pcut(G ) can be obtained for graphs not contractible to K5.
→ A polynomial combinatorial algorithm.
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R. Euler and A.R. Mahjoub, On a composition of
independence systems by circuit identi�cation (1990)

Triangle free subgraph Polytope
Let P∆(G ) = Conv{xT ∈ RE : (V ,T ) is triangle free}. The
triangle Free subgraph problem is

Max{wx : x ∈ P∆(G )}

x ∈ P∆(G ) satis�es ∑
e∈∆

x(e) ≤ 2,∆ ⊂ E (8)

0 ≤ x(e) ≤ 1, e ∈ E (9)

(8) are the Triangle inequalities and (9) are the Trivial

inequalities.
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Euler and Mahjoub (1990): Studied P∆(G ) in the graphs
decomposable by 1- and 2-sums : P∆(G )= union of
P∆(G1) and P∆(G2) by identifying the variables associated
to the edges of E1 ∩ E2.

Bendali, Mahjoub and Mailfert (2002) : Studied P∆(G ) in
graphs decomposable by a special 3-sum.
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Mixed constraints

Let Fk = {fk , gk , e1, e2, e3}, k = 1, 2; Given two valid
constraints of P∆(G1) and P∆(G2)∑

e∈F1

a(e)x(e) +
∑
E1\F1

a(e)x(e) ≤ b (10)

∑
e∈F2

a(e)x(e) +
∑
E2\F2

a(e)x(e) ≤ b′ (11)

we obtain a valid constraints of P∆(G ) of the form∑
e∈E1\F1

a(e)x(e) +
∑

e∈E2\F2

a(e)x(e) +
∑
F1∪F2

a(e)x(e) ≤ b + b′ − 2(12)
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The wheel Wn and its polytope

A wheel Wn is a cycle on n vertices and a universal node.
If n = 2k + 1, from a result of Conforti, Corneil and Mahjoub
(1986), P∆(Wn) is completely described by the trivial and
triangle inequalities together with the inequalities:

∑
e∈W2k+1

x(e) ≤ 3k + 1 (13)

30/49

Decomposition of graphs and composition of polytopes Roadef'2021-Mulhouse



Roadef'2021-
Mulhouse

Decomposition
of graphs

and
composition
of polytopes

Introduction

Compositions
for the stable
set polytope

Other
compositions

Compositions
for the
Weakly
Connected
Independent
set polytope

Conclusion

3-sum of two wheels

P∆(G ) is completely described by trivial inequalities and∑
e∈W5

x(e) ≤ 7, (14)

∑
e∈W7

x(e) ≤ 10, (15)

∑
e∈E

x(e) ≤ 15, (16)∑
e∈∆

x(e) ≤ 2,∆ ⊂ E (17)
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Introduction

Figure: Communication graph G = (V ,E )
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De�nitions

G = (V ,E ) a graph.

S ⊂ V , S ′ ⊂ V s.t. S ∩ S ′ = ∅, [S ,S ′] denotes the set of
edges with exactly one end in each set.
S ⊂ V , E (S) edges with both ends in S .
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De�nitions

G = (V ,E ) a graph.

Dominating Set (ds)

D ⊂ V is a ds if ∀v ∈ V \ D, ∃u ∈ D s.t. (u, v) ∈ E .

Connected Dominating Set (cds)

A dominating set D ⊂ V is a cds if G (D) = (D,E (D)) is
connected.

Weakly Connected Dominating Set (wcds)

A dominating set D ⊂ V is a wcds if
G (D) = (V ,E (D) ∪ [D,V \ D]) is connected.
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De�nitions

G = (V ,E ) a graph.

Maximal Independent Set (mis)

S ⊂ V is a mis if S is a dominating independent set.

Weakly Connected Independent Set (wcis)

An independent set W ⊂ V is a wcis if
GW = (V , [W ,V \W ]) is connected.
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wcis in WSN

Figure: A wcis = A hierarchy in a wireless sensor network
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Minimum weakly connected independent set
problem (F. B, J. Mailfert, D. Mameri (2016))

G = (V ,E ) a connected graph, W ⊂ V a wcis.
{0, 1} vector xW : the incidence vector of V given by

xW (v) =

 1 if v ∈W

0 if v ∈ V \W
MWCIS problem

min{
∑
v∈W

x(v) : W weakly connected independent set of G}

Pwcis(G ) = Conv{xW ∈ R|V | : W ⊂ V , wcis in G}.
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Pwcis in Odd Cycles

Theorem

Pwcis(C2k+1) is completely described by the following system.
2k∑
i=0

x(i) = k,

x(i) + x(i + 1) ≤ 1, for i = 0, . . . , 2k.
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Pwcis in 1-sum
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(Pwcis(Gi ))


∑
v∈V ′

i

aij(v)x(v) + aij(ui )x(ui ) ≤ αi
j , j ∈ Ji

x(v) ≥ 0, ∀v ∈ Vi

For i = 1, 2

Theorem

If G = (V ,E ) is the 1-sum of G1 and G2 obtained by identifying
a vertex u1 and a vertex u2, then Pwcis(G ) is given by

∑
v∈V ′

i

aij(v)x(v) + aij(ui )x(ū) ≤ αi
j , j ∈ Ji , i = 1, 2

x(v) ≥ 0, ∀v ∈ V ′1 ∪ V ′2 ∪ {ū}.
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Pwcis by adding a universal node

The convex hull of maximal independent sets Pmis(G ) is given
by constraints of the form∑
u∈V

ai (u)x(u) ≤ αi , i ∈ I .

The polytope Pwcis(Gu0) is described by∑
u∈V

ai (u)x(u) + αix(u0) ≤ αi , i ∈ I ,

x(u0) ≥ 0.
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Pwcis by modules

Let G = (V ,E ) be a connected graph. A set M ⊆ V of vertices
is a module of G if for any pair u, v ∈ M,
N(u) ∩ (V \M) = N(v) ∩ (V \M).
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Pwcis(G1) :

Pmis(M) adding a universal node t0 → Pwcis(G ′0) ;

Pwcis(G0) ;

The 1-sum of ( 1-sum of G0 and an edge ) and G ′0;

Pwcis(G ) is obtained from a projection of Pwcis(G1).
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Pwcis by Join and Corona Operations ( F. B, J.
Mailfert (2018))
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Pwcis by Join and Corona Operations

In the Join G + H :
H (G ) is a module of G + H: Pmis(H) and Pmis(G ) →
Pwcis(G + H).

In the Corona G ◦ H :
A universal node v and H : Pmis(H) → Pwcis(H ∪ {v}).
Pwcis(G ◦ H) is obtained from 1-sums of G and the copies
of H ∪ {v}, v ∈ V (G ).
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Berge's conjecture (1960) → Lovasz (1972) → perfect,
h-perfect and compositions (1975-2000)→ Seymour et al.
→ New operations→ New composition of graphs → New facets
and polytopes
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