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1 Introduction

We consider the Proactive Countermeasures Selection Problem, defined in [1]. An instance
of the PCSP is given by a triplet (G, K, D). Here, G = (V, A) is a directed graph called the
Risk Assessment Graph [2], where V = S fi T , S fl T = ÿ. Each arc (i, j) of A has a weights
wij œ R+. K = {(t, k) : k œ Kt, t œ T} is a set of available countermeasures such that Kt is the
set of countermeasures associated with t. The placement of k on t has a positive cost ct

k œ R+,
and it increases the weight of t-ongoing arcs by a factor –k

t œ R+. D = (ds
t )sœS,tœT œ R+ is a

positive security threshold vector. The PCSP consists in selecting a set of countermeasures, at
minimal cost, such that for each (s, t) œ S ◊ T the length of the s ≠ t shortest path is at least
dt

s. A bilevel model, as well as two compact and extended formulations, were introduced in [1]
to solve the PCSP.

In this abstract, we give polyhedral results and a Branch-and-Cut algorithm developed for
solving the extended formulation as well as some numerical results showing the e�ciency of
the algorithm.

2 Polyhedral investigation and Branch-and-Cut algorithm

We study the polytope associated to the path formulation. We characterize the dimension of
the polytope by considering the essential countermeasures set, i.e., the countermeasures such
that if we remove at least one of them, the PCSP does not have a solution. We then introduce
several classes of valid inequalities, namely the path covering inequalities, the countermeasures

path inequalities and the essential-by subsets removing-countermeasure inequalities. We discuss
when these inequalities define facets. We also study the optimality conditions for the PCSP.

The polyhedral results are used within a Branch-and-Cut algorithm. We develop a prepro-
cessing phase considering the essential countermeasures equations and the optimality condition
inequalities. We devise separation routines for the basic and valid inequalities. In particular, we
propose exact separation algorithms for both the basic inequalities and the countermeasures
path inequalities.We also prove that the separation problems of path covering inequalities and
essential-by subsets removing-countermeasure inequalities are NP-Complete requiring then the
use of heuristics to separate them. In addition, we have provided a primal heuristic in order to
reduce the size of the Branch-and-Cut tree and accelerate the resolution of the problem.



3 Numerical Results

We conduct extensive experimentations on random and realistic instances of the PCSP
problem. In this section, we present some numerical tests of the compact formulation and the
path formulation. The computational study shows the e�ciency of the polyhedral results. The
optimality condition inequalities and valid inequalities play an important role in the resolution
of the problem as we can see in Table 1. The entries of the table are the following :

|S| : number of access points ;
|T | : number of asset-vulnerability nodes ;
I_|S|, |T | : name of the instance ;
|A| : number of arcs ;
|K| : number of countermeasures ;
N : number of nodes in the Branch & Cut tree ;
NOpt : the number of instances solved to optimality / total number of instances ;
Gap : the relative error between the best upper bound

(the optimal solution if the problem has been solved
to optimality) and the lower bound obtained at the root,

CPU : total CPU time (in the format hh :mm :ss).

Compact formulation Branch and Cut
Name |A| |K| N Gap CPU NOpt N Gap CPU NOpt

I_10,100 139.2 201 34 0.07 0 :1 : 5 5/5 43.6 0.06 0 :01 :2 5/5
I_20,200 500.2 667.2 70.8 0.09 1 :38 :2 5/5 153 0.08 0 :12 :2 5/5
I_30,300 1103.6 1100.8 116 0.16 4 :10 :5 1/5 177 0.08 0 :49 :3 5/5
I_40,400 1864.8 981.8 120.2 0.39 - 0/5 63.8 0.09 3 :49 :3 3/5
I_50,500 2676.4 1674.4 138 0.23 3 :41 :1 1/5 157.2 0.09 3 :22 :3 4/5
I_60,600 3276.2 1613 88.2 0.41 - 0/5 79.8 0.10 1 :52 :3 3/5
I_70,700 3988.4 1876.2 57.8 0.49 - 0/5 104 0.09 2 :57 :6 3/5
I_80,800 4694 2854.4 68.2 0.51 - 0/5 92.6 0.13 3 :52 :7 2/5
I_90,900 6204.6 2765.4 54 0.45 - 0/5 79 0.12 3 :19 :5 3/5

I_100,1000 10866.4 3596 - - - 0/5 107 0.19 4 :42 :3 1/5
I_110,1100 14444.6 4987.2 - - - 0/5 103 0.23 4 :49 :5 1/5
I_120,1200 19546.6 5503.6 - - - 0/5 69 0.37 - 0/5

TAB. 1 – Comparison with the compact formulation for a family of random instances
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