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1 Introduction

The Constrained-Routing and Spectrum Assignment (CRSA) Problem can be stated as fol-
lows. Let G = (V, E') be an undirected, loopless, and connected graph, which is specified by a
set of nodes V', a multiset of links E, and a set of contiguous frequency slots {1,..., s} with
5 € Z,. Each link e = ij € E is associated with a length /. € R, (in kms), a cost ¢, € R, Let
K be a multiset of demands such that each demand k € K is specified by an origin node o, € V,
a destination node dy € V'\ {0}, a slot-width wy, € Z, , and a transmission-reach £ € R, (in
kms). The CRSA consists of determining for each k € K, a (og,di)-path py (subset of edges)
in G such that 3 .o, le < I, and a subset of contiguous frequency slots Sy C {1,...,5} of
width equal to wy such that S, N Sy = () for each pair of demands k, ¥’ € K with px Npp # 0
so that the total length of the paths used for routing the demands is minimized. The CRSA is
NP-hard as it generalizes the so-called RSA problem which is known to be NP-hard (see [1]).
In this work, we introduce two ILP formulations, and provide several classes of valid inequalities
for the associated polyhedron. We further discuss their separation problems. Using the poly-
hedral results and the separation procedures, we devise Branch-and-Cut (B&C) and Branch-
and-Cut-Price (B&C&P) algorithms to solve the problem. We also present some experimental
results.

2 ILP Formulations

We first introduce an edge-node formulation with a polynomial number of variables and an
exponential number of constraints which are separable in polynomial time using network flows
algorithms. For this, we consider for each k € K and e € F, a binary variable 2¥ which equals
1 if demand k goes through the edge e and 0 if not, and for each k € K and s € {1,...,5}, a
binary variable z¥ which equals 1 if slot s is the last slot allocated for the routing of demand &
and 0 if not. The subset of contiguous slots {s —wy+1, ..., s} should be assigned to demand &
whenever z¥ = 1. For a node subset X, let 5(X) denote the set of edges having one endnode in
X and the other one in X = V' \ X. For a demand k € K, let E} denote the set of all forbidden
edges of demand k such that for each edge e € E¥, the length of each (og,d)-path in G going
through edge e exceeds li, and let EF be the set of essential edges of demand k such that all
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feasible (oy,dy)-paths in G, they go through each edge e € E¥. The CRSA is equivalent to

min Z Zlemf, (1)
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Furthermore, we introduce an ILP formulation, called edge-path formulation, based on a
reformulation of the edge-node formulation. For this, we consider for each k € K and p € P*
and s € {1,..., 5}, a binary variable y]’,is which equals 1 if slot s is the last slot allocated along
the path p for the routing of demand k and 0 if not, where P* denote a set of all feasible
(ok,di)-paths in G for each k € K. This formulation has an exponential number of variables.
A column generation algorithm is then used to solve its linear relaxation.

3 Valid Inequalities and B&C and B&C&P Algorithms

We further identify several classes of valid inequalities to obtain tighter LP bounds. Some of

these inequalities are obtained by using conflict graphs related to the problem : clique inequa-
lities, odd-hole and lifted odd-hole inequalities. Wa also use the Chvatal-Gomory procedure
to generate larger classes of inequalities. We then devise their separation procedures for these
inequalities, and use them to devise B&C and B&C&P algorithms to solve the problem.
We provide a detailed comparative study between our B&C and B&C&P algorithms by using
two types of instances : random and realistic ones. They composed of two types of graphs :
real graphs, in particular Nsfnet (|V| = 14, |E| = 21), German (|V| = 17, |E| = 25) and
Spain (|V| = 30, |E| = 56), and realistics ones from SND-LIB, in particular Europe (|V| = 28,
|E| = 41), France (|V| = 25, |E| = 45) and German50 (|V| = 50, |E| = 88). For the demands,
the number of demands for each graph varies in {10, 20, 30, 40, 50,60} such that for each triplet
(G, K, s) with a s up to 140 slots, we tested 4 instances. The results show that our B&C&P
algorithm is able to provide optimal solutions for several instances, which is not the case for
the B&C algorithm within the CPU time limit (5 hours). Furthermore, we have studied the
influence of our valid inequalities. The results show that some of them, in particular clique and
cover inequalities are efficient. However, some instances are still difficult to solve with both
B&C and B&C&P algorithms. Our next step is to investigate different branching strategies.
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