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1 Introduction
In this work, we propose to solve state-constrained finite-horizon nonlinear optimal control

problems by means of optimistic planning methods. A main strength of this approach is the
relation between the convergence rates to the optimal solution and the computational resources
allowed, which is established using some ideas of bandit theory and reinforcement learning [4].

2 Problem formulation and motivations
For a given finite time horizon T > 0 and a nonlinear dynamics f , consider the following

state-constrained optimal control problem : :

v(t, x) := inf
a(·)∈A

∫ T

t
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t,x(s), a(s))ds + Φ(ya
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s.t. ya
t,x(t) = x

ẏa
t,x(s) = f(ya

t,x(s), a(s)), a.e. s ∈ [t, T ],
ya

t,x(s) ∈ K, ∀s ∈ [t, T ] (state constraints)

(1)

where t ∈ [0, T ], x ∈ Rd, ` and Φ are respectively the distributed and the final cost functions,
the input variable a(·) ∈ A, the set of measurable functions from [0, T ] taking values in A, a
compact set of Rm, m ≥ 1, and K is a closed subset of Rd.
In general, when K 6= Rd, the value function v may be discontinuous and cannot be characte-
rized through Hamilton-Jacobi equations unless some controllability assumptions are satisfied.
For this reason, we follow the level set approach, introduced in [2], which consists in characte-
rizing v by means of the following auxiliary control problem free of state constraints :

w(t, x, z) = inf
a(·)A
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, (2)

where (t, x, z) ∈ [0, T ]× Rd × R and g is a regular function verifying : x ∈ K ⇐⇒ g(x) ≤ 0.
It is known that, under some convexity assumption on f , v can be determined by the following
relation (see [2]) :

v(t, x) = inf{z ∈ R | w(t, x, z) ≤ 0}. (3)



3 Contributions
Our contribution in this work [1] consists in developing optimistic planning approaches to

deal with finite horizon problems in presence of state constraints. In particular, those algorithms
are exploited to approximate the auxiliary problem (2) and hence to get an approximation of
the optimal solution for the original state-constrained problem (1) by means of the relation (3).
While classical methods for calculating the value function are generally based on a discretiza-
tion in the state space, optimistic planning algorithms have the advantage of using adaptive
discretization in the control space. These approaches are therefore very suitable for control
problems where the dimension of the control variable m is low and allow to deal with pro-
blems where the dimension of the state space d can be very high. Our algorithms also have
the advantage of providing, for given computing resources, the best control strategy whose
performance is as close as possible to optimality while its corresponding trajectory comply
with the state constraints. Furthermore, we characterize the convergence rates to the optimal
solution as a function of the computational resources used. Moreover, we exploit some ideas
from Model Predictive Control [5] to propose an amelioration of the implementation of those
algorithms. Finally, we illustrate the relevance of our algorithms on several nonlinear optimal
control problems even in high dimensions of the state (until d = 103) which is impossible to
handle with classical numerical methods.
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