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1 Introduction

Our work aims to solve a class of Mixed-Integer Nonlinear Programs (MINLPs) in which we
can decompose the non-convex part into sums of univariate non-convex functions. [3] defines
these problems and proposes the Sequential Convex Mixed Integer Non-Linear Programming
(SC-MINLP) technique. We follow the notation below :

min
∑

j∈N cjxj

fi(x) +
∑

j∈H(i) gij(xj) ≤ 0, i ∈M
lj ≤ xj ≤ uj , j ∈ N
xj ∈ Z, j ∈ I.

The functions fi : Rn → R are convex and can be multivariate, while functions gij : R→ R
are non-convex univariate. All sets M , N , I ⊆ N , and H(i) ⊆ N are finite and lj and uj are
finite bounds for xj that appear in gij functions. The problem is NP-hard and can represent
variations of this structure since the notation presented is simplified. For example, the objective
function can also have the fi(x) +

∑
j∈H(i) gij(xj) form, as is showed in [3] for the Non-linear

Knapsack problem. Also, not all variables need necessarily appear in some non-convex terms,
and the bounds lj ≤ xj ≤ uj are not necessary for this case.

In the SC-MINLP technique, the relaxation of the gij(xj) functions is performed as follows : a
commercial package computes the s(ij)+1 breakpoints lj = l1ij < l2ij < ... < l

s(ij)
ij < l

s(ij)+1
ij = uj

from the second derivative of gij(xj). Then, we can define whether each subinterval [lsij , ls+1
ij ]

is convex Šij or concave Sij . Convex intervals are left as they are, while a linear relaxation
replaces concave intervals. These steps define a convex MINLP, whose continuous relaxation
provides valid lower bounds. In [3, 2], the following Incremental Model is used to formulate the
piecewise-convex functions. However, there are different ways to make this reformulation.

In this work, we compare the three classical different formulations for piecewise problems [1] :
the Incremental Model, the Multiple Choice, and the Convex-Combination. For piecewise-linear
functions, these models are known to be equivalent, as showed in [1]. However, this is not the
case for non-linear piecewise-convex functions, where Incremental Model is weaker than others.
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2 Alternative formulations for SC-MINLP
In the Incremental Model (IM), each sub-interval [lsij , ls+1

ij ] has a segment load variable xs
ij

which assumes value zero unless xs−1
ij reaches its maximum value, that is, xs+1

ij > 0 only if
xs

ij = ls+1
ij − lsij . The binary variables ys

ij are defined by the condition that ys
ij = 1 if xs

ij > 0,
and ys

ij = 0 otherwise. The variables zs
ij define the contribution of each convex interval to the

relaxed function. For f̄i = fi(x) +
∑

j∈H(i) gij(l1ij) +
∑

s∈Ŝ(ij) α
s
ijx

s
ij , we can define :

min
∑

j∈N cjxj (1)
f̄i(x) +

∑
j∈H(i)

∑
s∈Š(ij) z

s
ij ≤ 0 i ∈M (2)

zs
ij ≥ gij(lsij + xs

ij)− gij(lsij) s ∈ Š(ij), j ∈ H(i), i ∈M (3)
xj = lj +

∑
s∈S(ij) x

s
ij j ∈ H(i), i ∈M (4)

(ls+1
ij −lsij)ys+1

ij ≤ xs
ij ≤ (ls+1

ij −lsij)ys
ij s ∈ S(ij), j ∈ H(i), i ∈M (5)

ys
ij ∈ {0, 1} s ∈ S(ij), j ∈ H(i), i ∈M (6)
xj ∈ Z j ∈ I (7)

The Multiple Choice model (MC) introduces an alternative definition of the segment va-
riables. The load variable xs

ij , for each segment s, defines the total load xs
ij = xj and ys+1

ij = 1,
if xj lies on the sub-interval [lsij , ls+1

ij ]. Otherwise, xs
ij = ys+1

ij = 0. In this formulation, at most
one ys+1

ij will equal one. The model is defined with (1), (2), (6), (7), plus :
zs

ij ≥ gij(xs
ij)− gij(0) s ∈ Š(ij), j ∈ H(i), i ∈M (8)

xj =
∑

s∈S(ij) x
s
ij j ∈ H(i), i ∈M (9)

lsijy
s
ij ≤ xs

ij ≤ ls+1
ij ys

ij s ∈ S(ij), j ∈ H(i), i ∈M (10)∑
s∈S(ij) y

s
ij = 1 i ∈M, j ∈ H(i) (11)

and redefining f̄i = fi(x) +
∑

j∈H(i) gij(0)
∑

s∈Š(ij) y
s
ij +

∑
s∈Ŝ(ij)(αs

ijx
s
ij + (gij(lsij)− αs

ijl
s
ij)ys

ij).
Finally, the Convex-Combination model (CC) is similar to the MC, but replacing xs

ij by
defining multipliers µs

ij and λs
ij as the weights of these two endpoints. The load and its cost are

computed as a convex combination of the load/cost of the two endpoints of the segment. For
this formulation, we replace xs

ij by lsijµs
ij + ls+1

ij λs
ij in equations (8) and (9). The replacement is

also made in f̄ , defined for MC. In addition, we have : (1), (2), (6), (7) and µs
ij + λs

ij = ys
ij , s ∈

S(ij), j ∈ H(i), i ∈M .
All formulations provide the same integer optimal solution, i.e., they are all equivalent. Ho-

wever, unlike the linear case, the continuous relaxations are not equivalent : indeed, we can
provide counter-examples where IM provides worse lower bound than the other two. Compu-
tational results show that MC and CC always provide equivalent lower bounds, while IM does
indeed yield worse in practice ; however, this does not always imply worse CPU times. Future
research will comprise a more in-depth computational analysis, as well as the theoretical proof
of the equivalence between MC and CC and that both have better relaxation than IM.
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