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1 Introduction
The Knapsack Problem with Setup (KPS) can be viewed as a variant of the well-known Knap-

sack Problem (namely KP), where a set of items is considered which is divided into a set of classes.
Each class is characterized by both fixed cost and fixed capacity while an item can be selected if
the class containing that item is activated. KPS finds its application in many real-world industrial
and financial applications, such as order acceptance and production scheduling. The goal of the
problem is to maximize the difference between the profits related to the selected items and that
related to the fixed costs incurred for setting-up classes without violating the knapsack capacity
constraint. The formal description of SKP (noted PKP S) can be written as follows :

max
m∑

i=1

ni∑
j=1

pijxij −
m∑

i=1
fiyi (1)

s.t.
m∑

i=1

ni∑
j=1

wijxij +
m∑

i=1
siyi ≤ C (2)

xij ≤ yi, ∀ i ∈ I, j = 1, ..., ni (3)
xij ∈ {0, 1}, yi ∈ {0, 1}, ∀ i ∈ I, j = 1, . . . , ni, (4)

where C denotes the knapsack capacity, I is the set of m disjoint classes related to all items, ni is
the number of items belonging to the i-th class, pij and wij are setup cost and weight respectively
of the couple (i, j). Finally fi and si denote the setup cost and the capacity respectively of a
selected classe. In this case, xij is the decision variable that is equal to 1 if item j of class i is
selected in the knapsack’s solution, 0 otherwise and, yi denotes the setup decision variable that is
equal to 1 if the family i is activated, 0 otherwise.

2 A hybrid method for KPS
A starting solution for KPS can be provided by applying a two-steps procedure :
1. To solve a linear relaxation of the original problem PKP S by using the rounding strategy :

to fix step by step the variables yi to their binary values and round-up (to one) the yi

with fractional value in the relaxed problem. Solve each knapsack problem related to each
activated classe (with yi = 1) for getting the values related to xij variables.

2. To solve a mixed integer relaxation of the original problem by relaxing the variables xij and,
to add a valid constraint to the current relaxation. Hence, each knapsack problem related to
each activated classe (with yi = 1) is solved, where a valid constraint is defined as follows :
let d denote the number of the decision variables yi whose values are nonnegative in the
resulting knapsack problem ; thus, the following cardinality constraint is added as a valid
constraint :

∑m
i=1 yi ≤ d.

In order to adapt LB to KPS (cf. Boukhari et al. [2]), we need a starting solution for initializing the
first tree, the constraints to use for locally branch on non-searched subspaces and, a state-of-the-art
black-box solver for computing the local optimum for each (sub)tree. Let Y be a feasible reference
solution of PSKP provided by the constructive method, when the valid cardinality constraint is



added before calling the constructive procedure. Let S1 (resp. S0) be the set related to Y containing
elements fixed to one (resp. zero), i.e., S1 = {i|i ∈ I, y′

i = 1} (resp. S0 = {i|i ∈ I, y′
i = 0}). Then,

for a given nonnegative integer parameter k, kOpt defines the neighborhood N(Y ′, k) of the solution
Y as the set of the feasible solutions of PKP S satisfying the following additional local branch :

∆(Y, Y ′) =
∑
i∈S1

(1− yi) +
∑
i∈S0

yi ≤ k, (5)

where the two terms of left-hand side count the number of binary variables flipping their value
(with respect to the solution Y ) either from 1 to 0 or from 0 to 1, respectively. Herein, as used
in Fischetti and Lodi [4], the local branching constraint is applied as a branching criterion within
an enumerative scheme for PKP S . Indeed, given the incumbent solution Y ′, the solution space
associated with the current branching node can be partitioned by separately adding the following
disjunction :

∆(Y, Y ′) ≤ k, or ∆(Y, Y ′) ≥ k + 1, (6)

2.1 Experimental Part
The proposed Local Branching-Based Method (LBBM) was evaluated on a set of 200 instances

extracted from the literature (cf., Chebil et al. [3]) and Amiri [1]).

TAB. 1 – Performance of LBBM versus Mred and Lag

LBBM

Cplex Lag Mred k = 7 k = 8

ni z CPU Opt Gap CPU Gap CPU Opt Gap CPU Opt Gap CPU Opt

500 12522.15 231.21 36 0.1155 4.5 0.0515 0.04 16 0.00053 26.46 39 0.00089 30.19 38

1000 21805.675 587.61 22 0.244 5 0.35969 0.0375 15 0.00408 41.16 34 0.00529 44.56 32

2500 54012.4 996.44 1 0.3365 5 1.06924 0.03 25 0.01336 48.36 32 0.01224 52.2975 31

5000 100699.45 1014.29 12 0.29125 7.75 0.00131 0.01 36 0.0083 37.8 31 0.00411 45.815 26

10000 206632.15 1855.14 8 0.45175 16.5 1.62753 0.02 35 0.00939 40.17 25 0.00411 45.815 26

Av. 79134.365 936.939 79 0.28780 7.75 0.62186 0.03 127 0.00714 38.79 161 0.00684 42.92 154

Table 1 reports the results, of the instances, achieved by the four methods tested : Cplex
solver, Mred, Lag and LB-BM on all instances. The first column of the table shows the instance’s
information. Columns from 2 to 4 report the Cplex solver’s integer bound (noted z), the runtime
limit consumed by the Cplex and the number of optimal solution values matched by the Cplex.
Columns 5 and 6 display the average Gap achieved by Lag and its runtime limit (extracted from
Amiri [1]). Columns from 7 to 9 tally the average Mred’s Gap, its average runtime limit and the
number of optimal solution values matched by Mred. Finally, column from 10 to 12 (resp. from 13
to 15) show LB-BM’s average Gap with k = 7 (resp. k = 8), its related average runtime and the
number of the optimal solution values matched by the algorithm. According to the Table 1, on can
observe that the proposed method remains very competitive, where it outperforms all methods
available in the literature.
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