Tropical linear regression and its applications to markets with repeated invitations to tender

Marianne Akian, Stéphane Gaubert, Yang Qi, Omar Saadi

INRIA and CMAP, École polytechnique, IP Paris, CNRS. Address : CMAP, Ecole polytechnique, Route de Saclay, 91128 Palaiseau Cedex, France

 $\{marianne.akian,\,stephane.gaubert,\,yang.qi\}@inria.fr,\,omar.saadi@polytechnique.edu$

Mots-clés : Tropical geometry, mean payoff games, market equilibria, best approximation, auctions, disjunctive optimization.

1 The tropical linear regression problem

A tropical hyperplane is a set of the form

$$H_a := \{ x \in \mathbb{R}^n \mid \max_{i \in [n]} (a_i + x_i) \text{ achieved at least twice} \},\$$

where $a = (a_i) \in \mathbb{R}^n$ is fixed. Tropical hyperplanes are basic objects in tropical geometry [3]. They also arise in economics, in the analysis of auction mechanisms and price response [2]. We will give an application of our results in the next section.

A tropical hyperplane is invariant by the addition of constant vectors, so, we shall think of H_a as a subset of the tropical projective space $\mathbb{P}(\mathbb{R}^n)$, defined as the quotient of \mathbb{R}^n by the equivalence relation \sim such that $x \sim y$ if and only if x - y is a constant vector. A canonical metric on $\mathbb{P}(\mathbb{R}^n)$ is induced by Hilbert's seminorm, $||z||_H := (\max_{i \in [n]} z_i) - (\min_{i \in [n]} z_i)$. Given a finite collection of points \mathcal{V} of \mathbb{R}^n , we consider the following tropical analogue of the linear regression problem : find a vector $a \in \mathbb{R}^n$ minimizing the one-sided Hausdorff distance

$$\operatorname{dist}_{H}(\mathcal{V}, H_{a}) := \max_{v \in \mathcal{V}} \inf_{x \in H_{a}} \|v - x\|_{H} .$$

This is a non-convex problem of a unusual disjunctive nature since a tropical hyperplane is the union of n convex sectors. However, we next show that a strong duality theorem holds, leading to an effective algorithmic approach.

The dual problem will involve the tropical convex cone $\operatorname{Sp}(\mathcal{V})$ generated by \mathcal{V} , which is the set of tropical linear combinations of elements of \mathcal{V} , i.e., of vectors of the form $\sup_{v \in \mathcal{V}} (\lambda_v + v)$, where λ_v are real parameters, and the notation $\lambda + v$ for a scalar λ and a vector v stands for the vector obtained by adding λ to every entry of v. We consider the following *Shapley operator* $T : \mathbb{R}^n \to \mathbb{R}^n$, defined by

$$T_i(x) = \min_{v \in \mathcal{V}} [-v_i + \max_{j \in [n], j \neq i} (v_j + x_j)]$$
.

This is the dynamic programming operator of a zero-sum two-player deterministic game, in which i is the current state, $v \in \mathcal{V}$ is the action of player MIN, $j \neq i$ is the next state, chosen by player MAX, and $-v_i + v_j$ is the instantaneous payment made by MIN to MAX. One associates to such an operator a mean payoff game, in which players alternate moves indefinitely, and Player MAX (resp. MIN) maximizes (resp. minimizes) the average per time unit of the instantaneous payments. We denote by $\rho(T)$ the value of this game (which here is independent of the initial state). Computing the value of a mean payoff game is one of the fundamental problems of algorithmic game theory. It belongs to NP \cap coNP. It is not known whether it belongs to P. Experimentally efficient algorithms, including pseudopolynomial value iteration algorithms, are known. See [1] for background.

Theorem 1 (Strong duality) The maximal radius of a Hilbert's ball included in $Sp(\mathcal{V})$ is equal to $-\rho(T)$ and it coincides with the minimal distance from \mathcal{V} to a tropical hyperplane. Moreover, any vector u such that $T(u) \ge \rho(T) + u$ provides an optimal hyperplane H_u , whereas any vector v such that $T(v) \le \rho(T) + v$ provides an optimal ball centered at -v.

Corollary 2 The tropical linear regression problem is polynomial-time equivalent to the problem of solving a mean payoff game.

Here is an optimal regression hyperplane for points v^1, \ldots, v^6 in $\mathbb{P}(\mathbb{R}^3)$:

2 Application to a market equilibrium problem

We consider a market with n companies answering repeatedly to invitations to tender. Denote by p_{ij} the price offered by company $i \in [n]$ for the invitation number $j \in [q]$. Assume that the decision maker has a secret evaluation $f_i > 0$ of the technical quality of each company iand that she will select the company which minimizes the expression : $\min_{i \in [n]} p_{ij} f_i^{-1}$. A factor $f_i^{-1} \ge 1$ may be interpreted as a proportional penalty depending on the technical quality f_i of the company (the larger f_i , the better its quality). A factor $f_i^{-1} = 1 - \alpha_i \beta \le 1$ for some $0 \le \alpha_i \le 1$ and $0 \le \beta < 1$ may represent a proportional bribe : company i promises to secretely give back $\alpha_i p_{ij}$ to the decision maker if its offer is accepted, and the parameter β measures how sensitive is the decision maker to bribery ($\beta = 0$ corresponds to a totally honnest decision maker).

If the same companies answer in a recurrent manner to invitations from the same decision maker, the secret factors f_i being kept constant, we expect the prices to be offered to constitute an *equilibrium*, meaning that for each invitation $j \in [q]$, the minimum $\min_{i \in [q]} p_{ij} f_i^{-1}$ is achieved twice at least. Indeed, if company i which wins the invitation offers a price p_{ij} such that $p_{ij} f_i^{-1}$ is strictly smaller than $p_{kj} f_k^{-1}$ for all $k \in [n] \setminus \{i\}$, it may rise its price and still win the offer. We associate to each call for tender j a vector $v^j = (-\log p_{ij})_{i \in [n]}$, so that the decision maker selects the company of index i achieving the maximum in $\max_{i \in [n]} (v_i^j + a_i)$, where $a = (\log(f_i))_{i \in [n]}$. At equilibrium, this can be modeled in terms of membership of the points $(v^j)_{j \in [q]}$ to the tropical hyperplane H_a . More generally, measuring the "distance to equilibrium" in this market and inferring the secret factors f_i are equivalent to finding a tropical linear regression of the points $(v^j)_{j \in [q]}$.

Références

- M. Akian, S. Gaubert, and A. Guterman. Tropical polyhedra are equivalent to mean payoff games. International Journal of Algebra and Computation, 22(1):125001 (43 pages), 2012.
- [2] Elizabeth Baldwin and Paul Klemperer. Understanding preferences : "demand types", and the existence of equilibrium with indivisibilities. *Econometrica*, 87(3) :867–932, 2019.
- [3] J. Richter-Gebert, B. Sturmfels, and T. Theobald. First steps in tropical geometry. In Idempotent mathematics and mathematical physics, volume 377 of Contemp. Math., pages 289–317. Amer. Math. Soc., Providence, RI, 2005.