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1 Introduction
Quantum Approximation Optimization Algorithm (QAOA) recently emerged as a promising
variational approach to approximately solve combinatorial optimization problems with gate-
based quantum computers of the NISQ 1 era [1]. It becomes more and more important to qualify
its performance in real-world applications. We addressed this challenge with an industrial
problem from the high-growth sector of electric vehicles proposed by EDF. The goal is to tailor
and tune the quantum metha-heuristic for the studied problem and to qualify the performance
of the resulting solution.

The numerical analysis was realised on data of about 2250 loads performed on Belib network.

2 Smart charging problem
We consider a set of recharge jobs with specified priorities that we wish to schedule on parallel
stations such that the total weighted completion time is minimized. More precisely, given K
identical recharge stations the goal is to find a schedule for N recharge jobs with fixed durations
T = [t1, . . . , tN ] and priorities W = [w1, . . . , wN ] that minimizes the total completion time:

C =
N∑

i=1
wiCi (1)

The problem is (weakly) NP-complete and admits an (F)PTAS 2 (for fixed K) [3]. Thus, we
can compute the exact optimal values and fairly evaluate the solutions produced by QAOA.

In our approach we use the formulation of the initial problem in terms of Max-K-Cut problem
on a complete weighted graph G = (V,E) with |V | = N and E : (u, v) → min{witj , wjti}.
The Max-K-Cut problem is NP-complete and if P 6= NP it cannot be approximated with a
factor α > 16

17 . If, in addition, the highly believed Unique Game Conjecture holds, the bound
becomes α > 0.84 . . . [2] which is matched by the Goemans-Williamson algorithm.

2.1 Methodology

In quantum algorithms for combinatorial optimization an instance of the problem is mapped
an energy operator defined on a set of possible solutions called Hamiltonian H. The ground
state of H corresponds to the optimal solution. A quantum-classical heuristic QAOA returns
a low-energy energy state that approximate the optimum of the objective function.
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QAOA has a polynomial runtime with the constant factor that depends on a tunable depth
parameter p. The quantum part consists of p applications of parametrized blocks where the
parameter values are optimized by a classical routine. Increasing depth in theory improves
the quality of the solution (in fact, as follows from the adiabatic theorem in the limit p → ∞
QAOA finds the exact optimum) but it signigicantly complexifies the search of the optimal
parameters so in practice the applications are limited to small values of p (p ∼ 10).

By introducing binary encoding we extend the original QAOA, designed to for our usecase
approximately solve combinatorial problems of type QUBO3:

min f : {0, 1}n → R+ (2)

We also compare different methods for the searching for QAOA optimal parameters and
establish that the Nelder-Mead numerical optimization is the best choice while the widely-used
COBYLA method is unable to find the good parameter values. We compile all observations
in an experimental protocol dedicated to the QAOA solving our problem.

3 Conclusion and future work
As QAOA is an heuristic, we can’t proof a general analytical bound on its approximation ratio.
However, the numerical analysis shows that QAOA outperforms the randomized algorithm and
that the results improve while the depth is growing. We observe that even at lowest depth p = 1
on graphs of all considered sizes QAOA demontstrates the average approximation ratio that
is bigger than 0.85 - the ratio achieved by Goemans-Williamson classical algorithm. In future

FIG. 1: Left panel: Evolution of the approximation ratio of QAOA with depth p for the Max-Cut
problem. Right panel: Evolution of the average approximation ratio with the instance size for QAOA

at depth p = 1 (dashed orange line) and for the randomized algorithm on the initial scheduling problem
(dotted blue line).

work we plan to explore the performance of QAOA on more realistic models for smart charging
as well as to study other quantum algorithms such that Quantum Annealing or RQAOA.
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