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1 Introduction
In this project we propose an algorithm for the solution of the following problem :

min
x,y

f(x, y) (1a)

xlb ≤ x ≤ xub, ylb ≤ y ≤ yub (1b)

x ∈ Rn1 , y ∈ Zn2 (1c)

where f : [Rn1 × Zn2 ] −→ R is a mixed-integer black-box function. Black-box functions are
often expensive-to-evaluate and do not present analytical form, which means that no gradient
nor second-order information can be used to optimize them. Black-box problems arise in se-
veral settings, such as medical imaging, engineering design, operations research and financial
applications, among others.

Different methodologies have been developed to address the complexity of black-box pro-
blems, aiming to find near-optimal solutions while performing a reduced number of objec-
tive function evaluations to keep the optimization time acceptable. Such methodologies often
include the use (and combination) of heuristics, direct-search algorithms, model based (or
surrogate) approximation and randomized search. Derivative-free optimization is a natural
technique to solve black-box optimization problems, as it is intrinsically designed to avoid the
computation of derivatives.

Black-box problems often include non-relaxable discrete variables. The presence of discrete
(binary, integer or categorical) variables add additional challenges to the ones faced in the
optimization of mixed-integer functions. Methodologies for the solution of such problems are
often based on the generalization of continuous derivative-free techniques, for example :

1. Alternate continuous and integer search, via direct search and local search, respectively
[1].

2. Local quadratic surrogate approximation based on trust-region methods [2].
3. Global surrogate approximation via Radial Basis Functions (RBF) models [3], [4], [5].
A crucial issue faced while addressing mixed integer-derivative free problems is the definition

of a mixed-integer minimizer, and a proper convergence criterion. Newby and Ali [2] identify
three possible definitions : separate-local minimum, stronger-local minimum and combined-local
minimum. The three concepts deal with the degree of exploration of different integer manifolds
around a tentative solution. Such conditions are not often met and algorithm termination is
commonly addressed via objective improvement and distance criteria.



In this project we develop a convergent algorithm that tackles several issues. We propose a
trust-region based method which uses a tailored mixed-quadratic approximation that enables
the efficient reuse of previously sampled points and establish global convergence into (some form
of) a local minimum. The approximation is based on the assumption of dealing with a structured
objective named Locally Quadratic Mixed-Integer (LMQI) function, for which the notions
of continuous fully-linear/quadratic models could be extended, facilitating the convergence
analysis, even when such assumptions are not hold. In addition, LQMI approximations can be
obtained in a modular manner, providing flexibility in the surrogate model computation and
maintenance, using efficient methods based on continuous derivative-free optimization.

To asses the rate of convergence and the quality of the solutions obtained by three different
variants of our proposed methodology, we tested several instances with and without LQMI
structure. The results are compared with the ones obtained from pyNomad, a python interface of
NOMAD [6]. NOMAD is a derivative-free solver which implements a generalization of the Mesh
Adaptive Direct Search (MADS) algorithm [7], designed to solve a broad class of constrained
nonlinear optimization problems which may include integer, and, in cases categorical variables.

To benchmark the behavior of the solution approaches we use the scheme of performance
and data profiles [8]. In the derivative-free setting, a solver s ∈ S is said to be convergent
for problem p ∈ P , if it is able to achieve a specific fraction of the best objective reduction
obtained for p. Performance profiles are useful to identify how well a solver performs relative
to other solvers in S for the set of instances in P . The performance profile of solver s represent
the cumulative distribution of probability of performance ratio rs,p := ts,p/minŝ∈S{tŝ,p}, where
ts,p is the number of function evaluations required to satisfy the convergence test. Larger va-
lues of ts,p denote worse performance. On the other hand, data profiles are handy to identify
solver performance in cases when the number of function evaluations is limited. A data pro-
file represents the percentage of instances that solver s can solve with κ simplex gradients
ts,p/(np,1 + np,2 + 1).

The next two figures show the performance of NOMAD and the three variants of the algo-
rithm in 260 LQMI instances and 290 general MINLP test functions, including hard to solve
non-smooth instances.

FIG. 1 – Performance and data profiles in LQMI instances with 99 % of objective reduction

Figure 1 shows that the three variants of the algorithm obtain convergence faster and better
quality solution than NOMAD in LQMI test instances, which include ellipsoidal, quadratic
and maximum over quadratic functions. Figure 2 shows a better performance of NOMAD



in instances for which the objective function does not exhibit LQMI structure ; nonetheless,
with sufficient number of function evaluations all three algorithm variants are able to solve a
large percentage of non-LQMI instances. Current research is centered in the improvement and
acceleration of the methodology in a more general class of MINLP functions.

FIG. 2 – Performance and data profiles in MINLP instances with 99 % of objective reduction
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