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Markov Decision Processes (MDPs) are a powerful model to solve stochastic optimization
problems. They suffer, however, from what is called the curse of dimensionality, which basi-
cally says that the size of the Markov process is exponential in the number of components of
the system so that the complexity of computing a solution given the model parameters is expo-
nential. As for existing general reinforcement learning algorithms which try to find a solution
when the model parameters are unknown, they all have a regret and a runtime exponential in
the number of components, so they also suffer from the same curse.

Very few MDPs are known to escape from this curse of dimensionality. The most famous
example is certainly the Markovian bandits problem for which a solution can be computed in
O(n), where n is the number of bandits: the problem can be solved by using the Gittins indices
which are computed locally (see for example [3]). Hence, we investigate whether reinforcement
learning algorithms can also escape from the curse of dimensionality in this problem.

1 Markovian bandits problem and its solution

We have n bandits, each modeled by a Markov reward process with state space S; of size S,
a reward vector r; € [0,1]° and a transition matrix Q; for i € {1,...,n} := [n]. At time step
t > 0, observing the states of all bandits x = (x;);c[n], We activate one bandit a € [n] and
receive a discounted random reward (3¢ R; where R; is randomly drawn from some distribution
on [0,1] with mean rq(x,) and § is the discount factor of the problem. Bandit a transitions
to new state y, with probability Q4 (z4,y,) while the unchosen bandits stay in their current
state. The objective of the problem is to find a policy 7 : 81 X - -+ X S, + [n] that maximizes
the expected return E[> 12, B Ry).

When (r;, Q;)ic[n) are known, Gittins [3] defines the index, later called Gittins index, of state
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transitions are given by J; and 7 can be any stopping time adapted to the natural filtration of
(Zt)t>0. It is shown in [3] that always activating the bandit having the largest current index is
an optimal policy — i.e., the policy maximizes E [} §°, 3" R;]. Such a policy can be computed
very efficiently: The computation of the indices of bandit i can be done in O(S?) arithmetic
operations, which means that the computation of the Gittins policy is linear in the number of

bandits as it takes O(nS?) arithmetic operations.

x; € S; for bandit ¢ by y(z;) = sup,~q where Z is a Markov chain whose

2 Learning algorithms and regret

When (r;, Q;)ie[n are unknown, the reinforcement learning algorithms try to find an optimal
policy by interacting with the Markovian bandits, i.e., the algorithms initially output a ran-
dom policy and collect observations over time to improve their policy and ultimately deduce
an optimal policy. The performance of an algorithm is measured by its regret which is the



difference between the cumulative reward of the optimal policy and the one of the algorithm’s
policy. So, the regret quantifies how fast an algorithm can find an optimal policy.

To get enough information for deriving an optimal policy, the algorithms need to explore the
dynamic of the MDP as much as possible. However, too much exploration hurts the algorithm’s
performance. So, a good algorithm should also exploit the gathered information. Unfortunately,
untimely exploitation leads to suboptimal policies, thus unsatisfied performance. This is the
famous “exploration vs exploitation dilemma” in the learning problems.

There are two classes of reinforcement learning algorithms. The first class is composed of
algorithms that use the celebrated UCB approach known as the optimism in face of uncertainty
(OFU) principle. OFU methods build a confidence set for the unknown MDP and execute an
optimal policy of the “best” MDP in the confidence set, for example UCRL2 [1]. The second
class are algorithms that use Bayesian approach, the Thompson sampling method introduced
by [5] like PSRL [4]. Such algorithms keep a posterior distribution over possible MDPs and
execute an optimal policy of a sampled MDP.

Unfortunately, UCRL2 and PSRL incur O(S™V/T) of regret and O(S™) of computational
complexity in our problem where S™ is the state size of the MDP and T is total time. So, both
algorithms suffer the curse of dimensionality. Having Gittins index in hand, an interesting
question for us is to define an algorithm that escapes from this curse.

3 Our results

In this work, we propose a learning algorithm (called Markovian Bandit Posterior Sampling,
or MB-PSRL for short) whose regret is sublinear in time, O(Sv/nT), and whose runtime is
linear in the number of bandits, so that it escapes the curse of dimensionality. This algorithm
is an adaptation of PSRL [4] for Markovian bandits. We also design an OFU algorithm (MB-
UCRL2) adapted from UCRL2 [1]). The upper bound for its regret is similar to the bound
for MB-PSRL. The runtime of this optimistic algorithm is however exponential in the number
of bandits. We argue that it is likely that no OFU algorithms simultaneously have sub-linear
regret in time and linear computation complexity in the number of bandits.

In this paper [2], we report a series of numerical experiments to analyse the performance
of MB-PSRL and they confirm the good behavior of MB-PSRL, both in terms of regret and
computation complexity.

References

[1] Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal Regret Bounds for Re-
inforcement Learning. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors,

Advances in Neural Information Processing Systems 21, pages 89-96. Curran Associates,
Inc., 2009.

[2] Nicolas Gast, Bruno Gaujal, and Kimang Khun. MB-PSRL: a scalable learning algorithm
for markovian bandits. unpublished.

[3] J. C. Gittins. Bandit Processes and Dynamic Allocation Indices. Journal of the Royal
Statistical Society: Series B (Methodological), 41(2):148-164, January 1979.

[4] Tan Osband, Daniel Russo, and Benjamin Van Roy. (More) Efficient Reinforcement Learn-
ing via Posterior Sampling. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 26, pages

3003-3011. Curran Associates, Inc., 2013.

[5] William R. Thompson. On the Likelihood that One Unknown Probability Exceeds Another
in View of the Evidence of Two Samples. Biometrika, 25(3/4):285-294, 1933.



