Speed-scaling with explorable uncertainty

Evripidis Bampis!, Konstantinos Dogeas!, Alexander Kononov?,
Giorgio Lucarelli®, Fanny Pascual!

1 Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
{evripidis.bampis,konstantinos.dogeas,fanny.pascual}@lip6.fr
2 Novosibirsk State University, Sobolev Institute of Mathematics, Novosibirsk, Russia
alvenko@math.nsc.ru
3 Université de Lorraine, LCOMS, F-57000 Metz, France
giorgio.lucarelli@lcoms.fr

Mots-clés : speed scaling, scheduling, explorable uncertainty.

1 Introduction

Speed scaling is a well-known mechanism to handle energy consumption in computing sys-
tems. Given that the characteristics of the jobs may not be known in advance, many works in
speed scaling adopt the frameworks of online optimization [3], or stochastic optimization [4].
However, in some situations it is possible to obtain the exact job characteristics at some extra
cost. The operation that allows to obtain the exact value of some part of the input is called a
query. Durr et al. introduced recently the classical scheduling problem under explorable uncer-
tainty in [1]. In their model, the uncertain information concerns the processing time of each job
for which an upper bound is known in advance. It is possible to learn the exact processing time
by querying at a price of a unit cost. If a job is executed without a query, then its execution
time is equal to its upper bound. This assumption is motivated by the fact that a query could
correspond to a code optimizer as mentioned in [1]. In that case, the code optimizer needs
some workload to process the job and potentially reduces its workload. The upper bound on
the workload of a job corresponds to the workload of the job when the code optimizer is not
executed. Another possible application for this assumption is file compression. Contrary to the
previous approaches in the field of explorable uncertainty [6], queries are executed directly on
the machine running the jobs and so it is important to balance the time spent on queries and
the time spent on the execution of jobs.

2 Model

In the speed-scaling model [2], the speed of a machine can be modified by the scheduler in
order to save energy. In this work, we study the general case where the power is described
by the function P(s(t)) = s(t)®, where o > 1 is considered to be constant. Then, the energy
consumption is computed as E = [P(s(t))dt.

In the classical speed-scaling setting, each job j is characterized by a triple (7, d;, w;), which
represents the release time, the deadline and the workload of the job respectively. The workload
of j should be entirely executed in the interval (r;,d;] which is called its active interval. In
this paper, we augment this framework by introducing an uncertainty on the workload of the
jobs. Here, the workload, wj, is an upper bound rather than an exact value on the actual work
needed for the completion of a job. The ezact load, wj < w;, can be revealed to the algorithm
only after executing a query of additional load ¢; € (0, w,]. Hence, in our setting, each job is
characterized by a quintuple (7, d;, ¢j, w;, w;), where w7 is not known before the end of the

potential execution of the query. Note that, in the case where the query is not executed, the
scheduler is obliged to execute the upper bound of the workload w;.

We call the above enhanced model as Query-Based Speed-Scaling model (@BSS). The QBSS
model is online by nature, since the value of wj for each job j is revealed only after the potential
execution of the query c;. However, we distinguish between the offline and the online versions
with respect to the classical scheduling setting. In the offline version, the entire input is known
in advance, i.e., the total number of jobs to be scheduled, as well as their characteristics, except
for the exact loads w7. In the online version, the input becomes available to the algorithm over
time : at time ¢ = 7, a new job j and its characteristics are revealed, except again for the
exact loads wj. In other words, the algorithm does not know in advance how many jobs it has
to schedule, at which time they will arrive or what are their characteristics.

3 Results

In this work, we study an enhanced speed-scaling setting (called QBSS), where queries can
be optionally executed in the system in order to reveal a more accurate value of the workload
of jobs. The objective is energy minimization.There are two questions to answer for each job
j in the QBSS model : whether the query will be done or not, and, if yes, how to partition the
active interval of the job among the execution of its query and its exact load. Both decisions
have a crucial impact on the speeds and on the consumed energy. For the first question, doing
always the query leads to constant approximation algorithms, whereas never doing it leads to
unbounded ratios. Note that the optimal algorithm has complete knowledge of the instance,
including the exact loads. Hence, it can take this decision by comparing w; and ¢; + wj. For
the second question, the algorithm has to determine a splitting point 7; € (r;,d;), indicating
the latest time at which the query has to finish execution and the earliest time at which the
exact work of j may start its execution. We first consider the offline case where all jobs have a
common release date, and we present a series of results based on different assumptions on the
deadlines (e.g. common deadlines, power of two deadlines). For arbitrary deadlines, we obtain
an approximation ratio of (8¢)* by rounding down the deadlines of the instance to the closest
power of two. In addition we consider the online case, and we adapt the well-known AVR [2]
and BKP [5] online algorithms for the classical speed-scaling setting to the QBSS model. The
competitive ratios of our algorithms (AVRQ and BKPQ) have an additional multiplicative
factor with respect to their version in the classical setting : a factor of 2% for AVRQ in which
the query is made for all jobs, and a factor of (2 + ¢)* for BKPQ in which we decide to do
the query or not in function of the value of the ratio ¢;/wj. Finally, we study the QBSS model
on parallel identical machines and we propose a modification of the algorithm AVR(m), which
turns to be 2%(2°71a® 4 1)-competitive with respect to energy.

Références

[1] Christoph Dirr , Thomas Erlebach , Nicole Megow and Julie Meifiner. Scheduling with
Explorable Uncertainty. ITCS 2018.

[2] F. Frances Yao, Alan J. Demers and Scott Shenker. A Scheduling Model for Reduced CPU
Energy. 36th Annual Symposium on Foundations of Computer Science, 1995, Milwaukee,
Wisconsin, USA.

[3] Susanne Albers. Energy-efficient algorithms. Commun. ACM 2010.

[4] Bruno Gaujal, Alain Girault and Stéphan Plassart. Dynamic speed scaling minimizing
expected energy consumption for real-time tasks. J. Sched. 2020.

[5] Nikhil Bansal, Tracy Kimbrel and Kirk Pruhs. Speed scaling to manage energy and tempe-
rature. J. ACM 2007.

[6] Thomas Erlebach and Michael Hoffmann. Query-Competitive Algorithms for Computing
with Uncertainty. Bulletin of the EATCS 2015.

