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1 Introduction
In this work, we study the wide class of optimization problems where some costs are not

known at decision time and the decision flow is modeled as a two-stage process. We show how
two-stage robust models for this class of problems can be solved by means of a branch-and-price
algorithm where one may branch on continuous values so as to tighten the optimality gap. Our
approach generalizes a recent result from the literature which addressed the linear case and was
only applicable in presence of linking constraints involving binary variables ([1]), and extends
the associated results to problems with convex constraints and general mixed-integer linking
constraints. The convergence of the method is proven to ε-optimality.

2 Problem statement
More formally, we consider uncertain optimization problems where a two-stage decision flow

is required. Mixed-integer variable x are used to model the decisions to be taken here and now
(i.e., before the realization of the uncertainty), whereas mixed-integer variable y model the
decisions to be taken in a wait-and-see phase (i.e., once the uncertainty is revealed). Uncertainty
is modeled by continuous variables ξ that belong to a bounded convex set Ξ.

Our problem of interest then reads :

min
x∈X

max
ξ∈Ξ

min
y∈Y(x)

f(x, ξ,y) (2SRO-P)

Here, X denotes the first-stage feasible set while, for any x̄ ∈ X , Y(x̄) denotes the set of ad-
missible second-stage decisions. The continuous relaxation of X and Y(x),∀x ∈ X is assumed
to be convex, closed and bounded. In particular, denoting by X∗ the set of optimal first-stage
solutions of (2SRO-P), we assume that one is able to find a hyper rectangle [l,u] such that
X∗ ∩ [l,u] 6= ∅. Function f is assumed to fulfill mild assumptions, ensuring the validity of the
following reformulation of (2SRO-P) :

min
x∈X∩[l,u]

max
ξ∈Ξ

min
(t,y)∈Y ′(x)

∑
i∈Q

wi(ξ)ti (2SRO-R)

where Y(x) = projy(Y ′(x)) and the continuous relaxation of Y(x) is convex, closed and
bounded for all x taken in the continuous relaxation of X and functions (wi)i∈Q are concave
functions. In what remains of this document, set I will denote the set of indices for variables
x while set IB ⊆ I will comprise indices i for which xi is required to be integer (i.e., x ∈
R|I\IB | × {0, 1}|IB |).



3 Main contribution
Our main contribution is to propose a novel solution approach for problem (2SRO-P) by

means of a branch-and-price algorithm where some of the first-stage continuous variables may
be selected for branching throughout the execution. Our algorithm relies on the following two
proposition.
Proposition 1 (Lower-bounding problem). The following optimization problem’s optimal ob-
jective value is always a lower bound on the the optimal objective value of (2SRO-P) :

minimize
x,y,(vi)i∈Q,ξ

δ∗(ξ|Ξ)−
∑
i∈Q

tiwi∗

(
vi

ti

)
subject to x ∈ X ∩ [l,u]

(x, t,y) ∈ conv (S)∑
i∈Q

vi = ξ

vi ∈ R|U | ∀i ∈ Q
ξ ∈ R|U |

(P)

where δ∗(·|X) denotes the convex conjugate of the indicator function of set X, wi∗ denotes the
concave conjugate of function wi for i ∈ Q and conv (S) is the convex hull of the following set :

S =

(x, t,y) :
lj ≤ xj ≤ uj ∀j ∈ I
xj ∈ {0, 1} ∀j ∈ IB

(t,y) ∈ Y ′(x)

 (1)

Proposition 2 (Tightness condition). Denoting by v(·) the optimal objective value of problem
·, the following implication holds :

X∗ ∩ vert ([l,u]) 6= ∅ ⇒ v(P) = v(2SRO-P)

where vert ([l,u]) denotes the set of extreme points of [l,u].
These two propositions allow us to derive a spatial branch-and-bound algorithm where only

the first-stage variables are selected for branching until the tightness condition from proposition
(2) is reached. The convex hull of S is dynamically built as an ever increasing polyhedral
approximation by means of nonlinear column generation. The obtained method is proven to
converge finitely for a given nonzero precision.

We then apply our new methods to two problems. The first one is a variant of the Capacity
Facility Location problem where the unitary travel costs are not known at decision time. The
opening of facilities must be decided before knowing the exact travel costs while the underlying
routing problem is delayed to the second stage. Note that each arc between an opened facility
and a customer is also associated to a fixed activation cost one has to pay when using the arc.
The uncertain travel costs are assumed to follow a normal probability distribution and the
uncertainty set is therefore modeled as an ellipsoidal set. The second problem is a two-stage
capital budgeting problem where a budget may be invested in a set of projects with uncertain
profits. The profits are computed according to dependent or independent unknown risk factors.
The decision maker may choose to invest here and now or after having observed the risk factors.
However, early investments enjoy a first-mover advantage whereas a postponed investment only
generates a fraction of the profit. We also study the impact of possible loans in the investment
plan. For both problems we report encouraging computational results on a large benchmarks
derived from instances in the literature.
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