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1 Introduction
This paper investigates a structured nonconvex optimization problem including a nonlinear

composition. This general framework covers a wide class of problems in optimization such as
semidefinite programming [6], distributed optimization over networks, robust principal com-
ponent analysis [22], image processing [19], and machine learning [13].

Problem 1.1 Let (X , 〈· | ·〉) and (Y , 〈· | ·〉) be real Hilbert spaces, and c : X → Y be a
nonlinear, differentiable mapping. Let b ∈ Y . Let h : X → R be a differentiable noncon-
vex function, with Lh Lipschitz continuous gradient. Let f : X → ]−∞,+∞] and g : Y →
]−∞,+∞] be proper and lower semicontinuous convex functions not necessarily differentiable,
and g? denote its conjugate function. The problem is to

min
u∈X

ϕ(u) = f(u) + h(u) + g(c(u)− b), (1)

or equivalently min
u∈X

max
v∈Y

ψ(u, v) = f(u) + h(u) + 〈c(u)− b | v〉 − g?(v). (2)

The main challenges come from the nonlinearity of c and the nonconvexity of h. A typical
approach to solve nonconvex as well as convex optimization problems is to investigate the first
order optimal conditions. For Problem 1.1, the ε-first order optimality conditions for (u, v)
solving the min-max problem is characterized by

c(u)− b ∈ ∂(g∗)(v) +B(0; ε) and − [∇c(u)]∗v ∈ (∇h+ ∂f)(u) +B(0; ε), (3)

where B(0; ε) is the closed ball with radius ε, and ∂f(w) denotes the sub-differential of f at
w. When ε = 0, (3) is known as the Karush-Kuhn-Tucker (KKT) conditions. Throughout this
paper, we assume that such ε-saddle points exist.

Assumption 1.2 Let Y be subsets in Y and Z be a subset in X . Assume that
1. Assume that Im(∂g) and (Im(proxβg∗))β∈R+ are bounded by κ.

2. ∇c is µc-Lipschitz, and the uniform regularity of c on Z with constant ζ ∈ ]0,+∞[ with
respect to Y ; more precisely, (∃ζ ∈ ]0,+∞[)(∀(u, y) ∈ Z × Y ) ‖∇c(u)∗y‖ ≥ ζ‖y‖.

2 Related Work and Contribution
When c is linear and h is convex, this primal-dual problem has been widely investigated in
the literature ; see [7, 14] for detailed surveys on the subject. ADMM is the classic method
proposed for solving Problem 1.1 for the case where c is a bounded linear operator and h ≡ 0
[9]. This method is an application of the Douglas-Rachford method to the dual problem [8].
The main drawback of standard ADMM is that it may still exhibit slow convergence since it
requires exact solutions of the subproblems at each iteration. To overcome this issue, the first
strategy, proposed in [18], refined in [2], is known as the alternating direction proximal method



of multipliers. The second strategy consists of using a linearization technique [15]. Furthermore,
when f ≡ 0, some numerical methods have been recently proposed for solving Problem 1.1
even when g is nonconvex [16, 1]. When c is nonlinear and h ≡ 0, a modification of the well-
known Chambolle-Pock’s algorithm has been proposed in [19]. An alternative approach based
on preconditioned ADMM can be found in [3], where the convergence of the iterates is proved
under strong assumptions not fulfilled in our setting. However, it is unclear how these works
can solve Problem 1.1 with h 6≡ 0. Several algorithms based on the Augmented Lagrangian
methods for constrained nonconvex problems have been recently investigated in [11, 20, 5, 17].
Contribution : We propose a primal-dual splitting method to solve Problem 1.1. We charac-
terize the convergence guarantee in term of gradient mapping and feasibility. We then show
that, under mild conditions, the gradient mapping and feasibility of the generated iteration
converge to 0.

3 Algorithm
We use the smoothing technique of [21]. Let β ∈ ]0,+∞[ and (u, ẏ) ∈ X × Y , let Fβ :

u 7→ h(u) + gβ(u, ẏ) with gβ(u, ẏ) = supy∈Y
(
〈c(u)− b | ẏ〉 − g∗(y)− β

2 ‖y − ẏ‖
2
)
. Further, we

assume that ∇gβ(·, ẏ) is Lβ-Lipschitz continuous. Then, we apply only one proximal gradient
step on the resulting problem, reduce the parameter β and update the Lagrangian multiplier
following the usual ADMM. The resulting iterative algorithm can be described as follows, where
proxβg : y 7→ argminv∈Y(g(v) + 1

2β‖v − y‖
2).

Let α ∈ ]1/2, 1[, β0 = 1, σ0 > 0, θ � 1, χ >
√

48, ζ ∈ ]0,+∞[, N ∈ N0. Let u0 ∈ dom(f), ẏ0 ∈ Y .
Step 1 : Primal step Step 2 : Dual step
wk = proxβkg(c(uk)− b+ βkẏk)
y?k = ẏk + 1/βk(c(uk)− b− wk)
γk ∈ ]0, 1/(Lβk

+ Lh)[
uk+1 = proxγkf (uk − γk(∇h(uk) +∇c(uk)?y?k))


ak+1 = c(uk+1)− b
zk+1 = proxβkg(ak+1 + βkẏk)
ẏk+1 = ẏk + (1/σk)(ak+1 − zk+1)
βk+1 = 1/(k + 2)α

Step 3 : Find τ ≤ min
{ ζβk+1

χ‖ẏk‖µc
√
γk
,
ζβk+1

χθ

}
such that

‖∇c(uk)?y?k −∇c(uk+1)?(ẏk+1 + 1
βk+1

(ak+1 − wk+1)‖ ≤ θ
√
γk
‖uk+1 − uk‖+ θβk+1

(k + 1)ατ
1

βk+1
‖∇c(uk+1)?‖ ‖ak+1 − wk+1‖ ≤

ζβk+1

τχ
√
γk
‖uk+1 − uk‖

(4)

If k > N , Then STOP
Otherwise σk+1 = τ , k ← k + 1

4 Convergence Results
Given γ > 0, the gradient mapping is defined by Gβ,γ(·, ẏ) : u 7→ γ−1(u − u+) where u+ =

proxγf (u−γ∇Fβ(u, ẏ)). In nonconvex optimization, the relations between the gradient mapping
and stationary points are well-understood [10, 12, 4]. The following result develops this idea
to the context of saddle point problems and provides us a tool to find a saddle point.

Theorem 4.1 Suppose that ‖ak+1 − zk+1‖ ≤ ε and γk(Lβk
+ Lh) ≤ 1. Then (uk+1, ẏk+1) is a

ε-saddle point.

Theorem 4.2 [Convergence results of the proposed algorithm] Suppose that ϕ is bounded be-
low and Assumption 1.2 is satisfied with (uk)k∈N ⊂ Z, (ẏk+1 − ẏk)k∈N ⊂ Y . Suppose that
σk ≤ (2χ/3)σk+1. Then (ϕ(xk))k∈N is a convergent sequence, and every strong cluster point
(uk)k∈N is the stationary point. Moreover, ∑k∈N( 1

2βk
‖ak − wk‖2 + 1

γk1
‖uk+1 − uk‖2) < +∞.

Therefore, under the condition, (γk)k∈N is monotone decreasing, for every N ∈ N,

min
1≤k≤N

‖(uk+1 − uk)/γk‖2 = O(1/(NγN )) and min
1≤k≤N

‖(ak − wk)/
√
βk‖2 = O(1/N). (5)
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