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1 Scenario
We focus on a classic regenerative stopping problem where, as long as a stopping decision is
not made, costs are accumulated over time and the state continues to evolve. Both costs and
state evolution are governed by a stochastic data arrival process. When the controller decides
to stop, then an immediate cost is incurred and the state is reset to the start state. The goal
is to minimize the long-run average cost.

A prominent instance of this class of stopping problems arises in logistics. We consider a
transportation hub that sends truckloads of goods to different destinations. There is a cost for
shipping a truck to a destination and the goods have delay requirements on their delivery. Our
goal is to decide when to send a truck to a destination. If we delay sending a truck then more
goods might arrive for the destination, meaning that we can better consolidate goods and send
fewer trucks. On the other hand, waiting may cause disruptions to the end-to-end delivery
process. Our goal is to manage this trade-off according to a cost function that includes both
shipping and delay costs. The stochastic input data process represents orders being placed by
a customer, while the state describes the orders waiting to be shipped.

2 Our solution approaches
Assuming that the statistical properties of the input arrival process are unknown, in this
work we study the efficacy of learning-based solutions for regenerative stopping problems. In
particular we compare the following three techniques.
Model-based approach. Here we employ a direct problem solution and we are just learning

the input. More formally, we use the Markov Decision Process (MDP) solution based on an
estimate of the model parameters. Future input arrival statistics are predicted, the associated
approximate MDP is solved, the solution is applied for a few steps, and the process is repeated.
As time goes by, the parameter estimate improves and hence the solution quality does too.
Deep reinforcement learning (DRL). In the DRL approach the solution itself is learned and

we do not resort to solving the underlying model. Specifically, we run a deep value-based or
policy-based RL algorithm such as Deep Q-Network (DQN) [2] or Proximal Policy Optimization
(PPO) [4]. These algorithms learn the optimal action for any given state without explicitly
learning the model. The term “deep” implies that a neural network is used to approximate the
value function and/or the policy.
Imitation learning (IL). IL is a hybrid approach, in between model-based and DRL: the

solution is learned and we do solve the underlying model, but only for past samples. More
specifically, we run a hindsight optimization algorithm for each time step in the past to de-
termine what the best decision would have been assuming that we know the future. We then



apply the Imitation Learning algorithm from [3] to imitate this hindsight optimal solution in
real-time.

We show that the specific nature of the problem at hand makes it appealing to use techniques
that exploit the problem structure, such as the model-based approach and IL, thanks to the
efficiency of the respective solutions. Indeed, the MDP in the model-based approach can be
efficiently solved via an iterative technique involving finding the root of a Lagrangian-type
function, as studied by [1]. On the other hand, we prove that in our scenario the hindsight
optimal solution in IL can be solved in polynomial time.

3 Evaluation on real-world data
We evaluate the performance of our algorithms on real-world data. We consider the shipping
consolidation problem faced by a North American company who has one transportation hub in
the United States. In three recent quarters, it processed nearly 5K orders with a total weight
of 7M+(kg) and around 800 different destination cities in the US. The maximum capacity of
a full truck it used was a total weight of L = 22K (kg).

Our experiments show that, by directly learning the optimal actions from the input data
without constructing an explicit prediction for future inputs, one can better adapt to changes
in the input distribution. Two key questions are addressed for each of the investigated policy
learning approaches (DRL and IL). First, we define the state space in a way that is rich enough
to enable learning. Second, most learning algorithms require a significant amount of training
data. For most practical problems a single pass through the available data may not be sufficient
to learn a good policy. We therefore present ways in which we can reuse the available training
data via multiple passes.

4 Conclusions
Model-based solutions rely on an efficient technique by [1] to solve the underlying MDP. Yet,
(i) their performance depend greatly on the ability to predict future inputs and (ii) show high
run-time complexity, since a new MDP has to be solved whenever the prediction is updated.
On the other hand, deep learning approaches (i) can adapt naturally to changes in input
distribution as they directly learn a policy from historical data, and (ii) only require a NN
inference at run-time.
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