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1 Contribution
We study here one of the most fundamental problems in algorithmic graph theory related

to distances : the diameter. Given an n-vertex undirected graph G = (V, E), the diameter is
the maximum distance d(u, v), u, v ∈ V , where d(u, v) is the length of shortest (u, v)-paths. It
is a basic parameter used to apprehend the structure of a graph.

In this paper, we propose a linear-time algorithm computing the diameter of constant-
dimension median graphs. Median graphs form the class of graphs which is certainly the most
studied in metric graph theory. They are the graphs such that any triplet of vertices has a
unique median. Put formally, given x, y, z ∈ V , there is a unique vertex m(x, y, z) lying at the
same time on some shortest (x, y), (y, z), and (z, x)-paths. Said differently, m(x, y, z) is the
unique vertex being metrically between x and y, y and z, z and x. Median graphs are partial
cubes, i.e. isometric subgraphs of hypercubes. However, partial cubes are not necessarily me-
dian. Furthermore, median graphs are triangle-free, bipartite and do not contain induced K2,3.
The dimension d of a median graph is the dimension of its largest induced hypercube. This
parameter is upper-bounded by blog nc.

To the best of our knowledge, there is no subquadratic algorithm for the diameter on median
graphs. Bénéteau et al. [1] and Ducoffe [2] recently formulated this open question. There exist
efficient algorithms for other metric parameters on median graphs : the median set and the
Wiener index can be determined in time O(|E|) [1]. Furthermore, subquadratic algorithms
have been proposed for the recognition of median graphs [3]. Our contribution follows.

Théorème 1 There exists a combinatorial algorithm for computing the diameter in time
O∗(2d(log(d)+1)n) on median graphs.

Notation O∗ neglects polynomials of d, which are also poly-logarithmic factors of n. Let Qk

be the hypercube of dimension k. A consequence of this theorem is that, for any d = O(1), the
diameter can be determined in linear time O(n) on Qd-free median graphs. For example, this
is the case for cube-free median graphs (d ≤ 2). Moreover, as Q4 is not planar, planar median
graphs are Q4-free, so our algorithm is linear for this family of graphs.

2 Overview of the algorithm
A notion is essential to apprehend the structure of median graphs : Θ-classes. We say that

the edges uv and xy of a median graph G are in relation Θ0 if they form a square uvyx, where
uv and xy are opposite edges. Then, Θ refers to the reflexive and transitive closure of relation
Θ0. The classes of the equivalence relation Θ are denoted by E1, . . . , Eq. Each Θ-class Ei is
a matching cutset. Figure 1 gives examples of Θ-classes. We say two Θ-classes Ei and Ej are
orthogonal if there is a square uvyx formed by edges of both Ei and Ej . In Figure 1, E1 and
E3 are orthogonal for example, while E1 and E2 are not.
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FIG. 1 – A median graph G and five of its classes Ei, 1 ≤ i ≤ 5.

Hypercubes are omnipresent in median graphs. However, their cardinality can be upper-
bounded by 2dn, which is linear for constant dimension. There is a strong relationship between
hypercubes and Θ-classes. Indeed, given an hypercube Q of dimension k ≤ d, each of its edges
belong to one of k Θ-classes which are pairwise orthogonal. Such set of Θ-classes is called a
Pairwise Orthogonal Family (POF). Our algorithm proceeds in three successive steps.

— Step 1 : enumeration of hypercubes. A standard BFS allows us to list the hypercubes
of G. Starting from an arbitrary basepoint v0, for each vertex v, we collect all subsets of
incoming edges. There is a bijection between each of these subsets and the hypercubes
of G. This step takes time O∗(2dn).

— Step 2 : labeling of ladder sets. The ladder set is a notion defined for any pair of
vertices u, v aligned with v0, i.e. d(v0, v) = d(v0, u) + d(u, v). The ladder set Lu,v is the
set of Θ-classes incident to u which are on shortest (u, v)-paths. We can prove that Lu,v

is a POF. In Figure 1, Lu,v = {E2, E3}. In this step, we compute labelings ϕ(u, L) for
each vertex u and POF L outgoing from u. Integer ϕ(u, L) gives the maximum distance
of a shortest path starting from u such that its first edges belong exactly to Θ-classes L.
To determine all values ϕ(u, L), we proceed inductively. We observe that there exists a
formula between the POFs ingoing into a vertex u and the POF outgoing from it. The
running time obtained is O∗(22dn).

— Step 3 : maximum-weighted pair of disjoint ladder sets. Let (u, v) be an arbitrary
pair of vertices. There is a unique triplet made up of the median m = m(u, v, v0) and
ladder sets Lm,u and Lm,v which are disjoint. Determining the diameter is equivalent to
finding the pair of labels ϕ(m, L), ϕ(m, L∗) such that L∩L∗ = ∅ and ϕ(m, L) + ϕ(m, L∗)
is maximum. We determine this maximum-weighted pair with a bounded tree search in
a tree with at most d! nodes. This step runs in time O∗(2d log d2dn).

As the most expensive step is the third one, the total running time of the algorithm is slightly
super-exponential.

3 Perspectives
The algorithm can be naturally extended to compute all eccentricities within the same

complexity. We are currently working on the design of a subquadratic algorithm on median
graphs where the dimension is not necessarily bounded. The existence of a linear-time algorithm
seems to be compromise, as the distance VC-dimension of a median graph is unbounded.
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