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1 Multilevel Critical Node
Graphs are powerful mathematical structures that enable us to model real-world networks.

The problem of breaking the connectivity of a graph has been extensively studied in combina-
torial optimization since it can serve to measure the robustness of a network to disruptions. In
this work, we will focus on the Multilevel Critical Node problem (MCN) [1]. Let G = (V,A) be
a graph with a set V of vertices and a set A of arcs. In MCN there are two players, designated
by defender and attacker, whose individual strategies are given by a selection of subsets of V .
The game goes as follows : first, the defender selects a subset of vertices D ⊆ V to vaccinate
subject to a budget limit Ω and a cost{ĉv}v∈V ; second, the attacker observes the vaccination
strategy, and selects a subset of vertices I ⊆ V \ D to (directly) infect subject to a budget
limit Φ and a cost{hv}v∈V ; and third, the defender observes the infection strategy, and selects
a subset of vertices P ⊆ V \ I to protect subject to a budget limit Λ and a cost{cv}v∈V . A
directly or indirectly infected vertex v propagates the infection to a vertex u, if (v, u) ∈ A
and u is neither a vaccinated nor a protected vertex. The goal of the defender is to maximize
the benefit bv of saved vertices (i.e., not infected), while the attacker aims to minimize it. We
assume that all parameters of the problem are non-negative integers. The game description
can be succinctly given by the following mixed integer trilevel program :

(MCN) max
z∈{0,1}|V |∑

v∈V
ĉvzv ≤ Ω

min
y∈{0,1}|V |∑

v∈V
hvyv ≤ Φ

max
x∈{0,1}|V |

α∈[0,1]|V |

∑
v∈V

bvαv

s.t.
∑
v∈V

cvxv ≤ Λ

αv ≤ 1 + zv − yv, ∀v ∈ V (1a)
αv ≤ αu + xv + zv, ∀ (u, v) ∈ A, (1b)

where z, y, x and α are decision vectors whose coordinates are zv, yv, xv and αv for each
v ∈ V . In this optimization model, z, y and x reflect the set of vaccinated vertices D =
{v ∈ V : zv = 1}, directly infected vertices I = {v ∈ V : yv = 1} and protected vertices
P = {v ∈ V : xv = 1}, respectively. Finally, α mimics the propagation of the infection among
the vertices in V , through Constraints (1a) and (1b), and it is necessarily binary due to the
maximization in the last level (protection). Concretely, αv = 1 means that vertex v is saved
and αv = 0 means that vertex v is infected. In multilevel optimization, the first stage (in
MCN, the vaccination stage) is called the upper level or first level, the second stage is called
the second level, and so on, with the last stage being also designated by lower level. See [1] for
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FIG. 1 – Example of an MCN game with unitary costs and benefits, and budgets Ω = Φ = Λ = 1.
We removed the vaccinated and protected vertices as an infection cannot pass through them. Vertices
{1, 3, 4} are saved and {2, 6, 5} are infected.

further details on this mathematical programming formulation and Figure 1 for an illustration
of the game.

2 Contributions
We have investigated the subgames (i) Protect, where given D and I, the defender seeks

the optimal protection strategy, (ii) Attack, where given D and no protection budget, the
attacker determines the optimal infection strategy, (iii) Attack-Protect, where given D,
the attacker computes the optimal infection strategy, and (iv) Vaccination-Attack, where
given no budget for protection, the defender finds the optimal vaccination strategy. Note that
in a multilevel optimization problem, like the MCN, the ultimate goal is to find the optimal first
level decision. Hence, if for example in the MCN, we had always Ω = |V |, then we would know
directly that all vertices are saved, even if the attack problem is theoretically intractable. This
supports the interest of understanding the individual complexity of each subgame of MCN.

In the presentation we will provide reductions from the Knapsack Interdiction Problem
(KIP) [2] to prove that the decision version of both bilevel subgames Attack-Protect and
Vaccination-Attack with arbitrary weights are Σp

2-complete (where Σp
2 = NPNP), i.e. are

complete for the second level of the Polynomial Hierarchy. These results will then be generalized
to demonstrate the Σp

3-completeness (where Σp
3 = (Σp

2)NP) of the decision version of the full
trilevel MCN with arbitrary weights using an extension of the KIP to three decision levels.
The Σp

3-completeness of the trilevel KIP is itself derived from the 3-Alternating Quantified
Satisfiability Problem. We therefore provide the first reductions to prove the Σp

3-completeness
for the decision versions of trilevel interdiction problems and add two problems to the very
limited list of Σp

3-complete problems. These results shed light on the practical difficulties dealt
in [1].

We will also provide a number of complexity results of Protect by exploring graph classes
where it becomes polynomially solvable.

Références
[1] Andrea Baggio, Margarida Carvalho, Andrea Lodi, and Andrea Tramontani. Multilevel

approaches for the critical node problem. Operations Research, To appear, 2020.
[2] Alberto Caprara, Margarida Carvalho, Andrea Lodi, and Gerhard J. Woeginger. A study

on the computational complexity of the bilevel knapsack problem. SIAM Journal of Opti-
mization, 24 :823–838, 2014.


