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1 Introduction

The knapsack problem arises in several applications, like packing, logistics and multi-
media. Often simple deterministic and stochastic approximate solution procedures may
be used for tackling some types of these problems. However, it has been remarked that
the aforementioned approaches may converge towards non-desirable solutions.

In this study, we investigate the use of the two-stage ε-constraint strategy-based method
for solving the Bi-Objectif-Quadratic Multiple Knapsack Problem (BO-QMKP). Such a
problem can be viewed as a combination of two well-known NP-hard combinatorial opti-
mization problems, where two objective functions are considered : (i) quadratic knapsack
problem and (ii) multiple knapsack problem.

2 The problem

An instance of BO-QMKP is characterized by a set M = {1, . . . ,m} of m knapsacks
of fixed capacity each, i.e., c = (c1, . . . , cm), and a set N = {1, . . . , n} of n items. Each
item i, ∀ i ∈ N, is characterized by a profit pi and a weight wi such that each pair of
items (i, j) belonging to N ×N (i 6= j) has an augmented profit pij if both items belong
to the same knapsack k, k ∈ M. The goal of the problem is to assign each item to at
most one knapsack such that the total weight of the items in each knapsack k, k ∈ M,
does not exceed its capacity ck and both (i) the total profit of all the items included into
the knapsacks and (ii) the makespan related to the knapsack with the lowest gain, are
maximized. Formally, the BO-QMKP can be stated as follows :
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xij ∈ {0, 1},∀i ∈ N, ∀j ∈M, (5)

3 The proposed method

The ε-constraint can be used as an alternative strategy that can be able to generate a
series of non-dominated points. The provided solutions can be considered as the solutions
forming the Pareto front. Indeed, the used process may mimic the following steps : let z1



(resp. z2) be the best objective function provided by the local branching LB of [4]). Then,
the following optimization problem can be considered :
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s.t. (3), (4) and(5). (8)

Of course, the above problem can be transformed whenever the second objective function
z2 should be optimized.

Herein, a preliminary computational results is provided to assess the performance of
the proposed method, where its provided results are compared to the best known bounds
available in the literature. The instances used as benchmarks are taken from Chen et
al. [4], where a set of 15 large-scale instances are considered with n = 300 (items).

TAB. 1 – Behavior of the ε-constraint method versus some best available methods

#Inst SO IRTS [2] EPR [3] BSSBM [1] Iε-CH
n d m I c z1 z1 z1 z2 z1 z2

300 25 3 1 2048 223291 223661 223661 31751 223661 31751 223201 32673
300 25 3 2 2058 209940 210981 210981 37309 210981 37309 210294 38448
300 25 3 3 2090 209621 210910 210910 37753 210910 37753 210910 37753
300 25 3 4 2104 214773 215639 215732 36872 215732 36872 215273 37754
300 25 3 5 2045 211567 212432 212432 31295 212432 31295 212432 31295
300 25 5 1 1229 162952 163668 163746 15309 163746 15309 163746 15309
300 25 5 2 1234 151533 152860 152951 15539 152951 15539 152699 16109
300 25 5 3 1254 152043 153347 153489 14987 153489 14987 153017 15725
300 25 5 4 1262 155179 156340 156340 17136 156430 17136 156172 17754
300 25 5 5 1227 153592 154936 154936 14621 154936 14621 154324 15734
300 25 10 1 614 107525 109400 109400 4846 109400 4864 109314 5181
300 25 10 2 617 100699 102306 102383 4303 102400 4303 102424* 4303*
300 25 10 3 627 102338 103707 103794 4415 103832 4872 103832 4872
300 25 10 4 631 103177 105290 105294 4294 105294 4294 105294 4294
300 25 10 5 613 102649 104120 104218 5137 104218 5137 104125 5190
300 75 10 2 567 266877 267728 268003 6185 268007 5999 268102* 6185*

From Table 1, one can observe that the proposed method is able to reach new domina-
ted points and matches the rest of the bounds achieved by more recent method in the
literature.

4 Conclusion
In this study, the bi-objective quadratic multiple knapsack problem was solved by using

an ε-constraint strategy-based method. Such a method combines both local branching and
ε-constraint strategies. The local branching tries to intensify the search process while the
ε-constraint strategy is used for diversifying the search process. The preliminary computa-
tional results showed that the method remains competitive when comparing its provided
results to those achieved by the best methods available in the literature.
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