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1 Introduction
A distributed denial of service (DDoS) is a type of cyberattack in which multiple compro-

mised computer systems attack a target, such as a server or a website, and cause a denial of
service for its legitimate users. DDoS attacks are among the top threats to network operators
and internet service providers (ISPs) as they can be very damaging for the organization they
target.

Network Function Virtualization (NFV) is a recent network architecture concept in which
network functions are implemented as software and deployed as virtual machines running on
general purpose commodity hardware. NFV offers new possibilities to counter DDoS attacks.
In particular, its flexibility and reactivity allows to postpone the DDoS defense deployment
after the attack is detected and to adjust the deployed defense mechanisms to the type and
scale of the DDoS attack. We take here the perspective of an ISP such as Orange aiming at
providing a NFV-based DDoS mitigation service to its customers in a 5G network. Among
the key features of 5G networks is network slicing. Network slicing is an architecture in which
the physical network infrastructure managed by an ISP is partitioned into multiple virtual
independent networks termed slices. Each slice is an isolated end-to-end network which is lent
by the ISP to a single customer. On each slice of the network, the routing of the flow will
be managed by its customer which will rely on its own proprietary routing algorithms. This
significantly enhances the difficulty for the ISP of providing a DDoS mitigation service as it
will not control the exact routing of the malicious flow that needs to be stopped.

We thus present a robust optimization (RO) model to optimally design an NFV-based DDoS
mitigation infrastructure in the context of 5G network slicing. This model explicitly takes into
account the fact that the ISP is not aware of the exact routing of the attack flow and considers
the malicious flow routing as an uncertain input parameter.

2 Problem modeling
The network topology is modeled by a digraph G = (N ,L) in which N , the set of nodes,

represents specific equipment in the network and L, the set of arcs, corresponds to the links
that can be used to route the traffic. The routing of the traffic in the network is limited by the
bandwidth bl of each link l.

The illegitimate traffic corresponding to the on-going DDoS attack is represented as a set
A of attacks : attack a ∈ A corresponds to an illegitimate traffic of F a Mbps between a
source sa ∈ N and the target t ∈ N of the DDoS attack. The exact routing in the network of



the malicious flow to be stopped is not known by the ISP at the time when it has to decide
about the NFV-based DDoS mitigation infrastructure. Let Pa be the set of all potential paths
between sa and t for attack a. The amount of malicious flow of attack a ∈ A on path p ∈ Pa,
denoted by f̃a

p , is thus subject to uncertainty. However, we know that the total amount of
malicious flow routed on the paths belonging to Pa may not be greater than F a, the amount
of illegitimate traffic of attack a, and that it should comply with the limited bandwidth of each
link. This means that the uncertain malicious flow routing, f̃ , belongs to the uncertainty set
U defined by : U = {f̃ ≥ 0|

∑
p∈Pa f̃a

p ≤ F a,∀a ∈ A;
∑

a∈A
∑

p∈Pa s.t. l∈La
p
f̃a

p ≤ bl,∀l ∈ L}.
Virtual Network Functions (VNFs) are used to stop the illegitimate traffic before it reaches

its target. A VNF instantiated on a node n ∈ N of the network will thus stop the malicious flow
going through n. However, it has a limited capacity which corresponds to the maximum amount
of malicious flow it can block. A VNF of type v ∈ V is characterized by its filtering capacity φv,
its cost Kv and its computing resources consumption. The set of computing resources (CPU,
memory, etc.) is denoted by R = {1, ..., R}. Let krv be the amount of computing resource r
required by the instantiation of one VNF of type v and Capr

n the amount of computing resource
r available at node n.

The optimization problem consists in identifying the location and number of VNFs to be
placed in the network so as to stop all the malicious flow before it reaches its target, and this
whatever its routing through the network, while minimizing the cost of the instantiated VNFs.
Let xv

n be the decision variables representing the number of VNFs of type v placed at node n.
The problem can be formulated as follows :

Z∗ = min
∑
v∈V

∑
n∈N

Kvxv
n (1)

∑
v∈V

krvxv
n ≤ Capr

n ∀n ∈ N ,∀r ∈ R (2)
∑

n∈N (f̃)

∑
v∈V

φvxv
n ≥

∑
a∈A

∑
p∈Pa

f̃a
p ∀f̃ ∈ U (3)

xv
t = 0 ∀v ∈ V (4)
xv

n integer ∀n ∈ N ,∀v ∈ V (5)

The objective (1) is to minimize the total costs of the deployed VNFs. Constraints (2) ensure
that the VNFs installed at each node n do not consume more than the available computing
capacity for each computing resource. Constraints (3) impose that, for each possible routing
f̃ , the total filtering capacity installed on the nodes traversed by a strictly positive amount of
malicious flow in the routing f̃ , i.e on the nodes belonging to N (f̃), is larger than the total
malicious flow actually routed through the network in f̃ . Constraints (4) forbid any filtering
at the targeted node.

3 Solution approach and computational results
We propose an adversarial approach based on the decomposition of the initial problem into

a master problem and an adversarial sub-problem. The master problem is a restricted version
of the original RO problem in which only a finite number of extreme points UR ⊂ U of
the uncertainty set are used to express the robust constraints. This problem is a deterministic
optimization problem with a finite number of constraints and is thus computationally tractable.
Given the solution provided by the master problem, the adversarial sub-problem seeks to find
an extreme point of U for which this solution is infeasible. If no such extreme point can be
found, the current solution of the decision maker problem is optimal for the initial RO problem.
Otherwise, we add the newly found extreme point to UR and reiterate the process. The finite
convergence of this algorithm is ensured by the fact that U has a finite number of extreme
points. Our computational results show that the proposed algorithm is able to provides optimal
solutions to medium-size randomly generated instances within short computation times.


